

Report of the LHC Computing Grid Project

Persistency Management RTAG

Rene Brun, Dirk Duellmann, Vincenzo Innocente, David Malon (convenor),

Pere Mato, Fons Rademakers

CERN

5 April 2002

Persistency Framework RTAG - Final Report

– 2 –

Table of Contents

1 Convenor’s Summary 3

2 SC2 mandate to the RTAG 4

2.1 Guidance from the SC2 4

2.2 Response of the RTAG to mandate and guidance 4

2.3 RTAG timetable 5

3 Scope and Requirements 6

3.1 Scope 6

3.2 Principal use cases 6

3.3 Requirements 6

4 Architecture Design 9

4.1 Design Criteria 9

4.2 Service model 9

4.3 Interface model 10

4.4 Other Issues 10

4.5 Component breakdown 11

5 Specific recommendations to the SC2 18

5.1 Recommendations for near-term work 18

5.2 Recommendations regarding potential common components not addressed in detail in
this report 18

5.3 Longer-term R&D recommendations 18

6 Product Specification for a near-term common project 19

6.1 Charge to a first common project on persistence 19

6.2 Implementation Technologies 19

6.3 Components 19

6.4 Resource Estimates 21

Persistency Framework RTAG - Final Report

– 3 –

1 Convenor’s Summary
This document is the final report of the LHC Computing Grid Project’s Requirements Technical
Assessment Group (RTAG) on persistency.

The mandate to this RTAG, reproduced in the next section of this document, was quite ambitious.
We did not manage to satisfy the mandate in its entirety, and those issues that we have managed
to consider have been treated at uneven levels of detail. We do hope, however, that we have
succeeded in our principal objective, which has been to provide a clear and solid foundation for
an initial collaborative project to develop a common persistence infrastructure.

There are several matters, some related to the architecture generally and some involving more
detailed specification of particular components, regarding which we have not, admittedly,
reached full consensus. We have chosen not simply to omit all such material from this document,
but rather, to include some of this material as a record of our thinking. We expect that a common
project will preserve the spirit if not the details of our recommendations, resolving issues that we
have not managed to resolve in the limited lifetime of this RTAG, and addressing our many
acknowledged omissions.

With the SC2’s concurrence, we propose to conclude the RTAG effort at this point in the interest
of timely commissioning of a common project. We realize that we have not resolved many
genuinely important issues, but we are confident that we will have the opportunity to continue
these discussions in a future forum, for we view this RTAG as merely the first step in an ongoing
and fruitful collaboration in which we all look forward to participating.

David Malon

5 April 2002

Persistency Framework RTAG - Final Report

– 4 –

2 SC2 mandate to the RTAG

− Write the product specification for the Persistency Framework for Physics Applications at
LHC.

− Construct a component breakdown for the management of all types of LHC data

− Identify the responsibilities of Experiment Frameworks, existing products (such as ROOT)
and as yet to be developed products.

− Develop requirements/use cases to specify (at least) the metadata /navigation component(s)

− Estimate resources (manpower) needed to prototype missing components

2.1 Guidance from the SC2

The RTAG may decide to address all types of data, or may decide to postpone some topics for
other RTAGS, once the components have been identified. The RTAG should develop a detailed
description at least for the event data management. Issues of schema evolution, dictionary
construction/storage, and object and data models should be addressed.

2.2 Response of the RTAG to mandate and guidance

It is the intent of this RTAG to assume an optimistic posture regarding the potential for
commonality among the LHC experiments in all areas related to data management. The RTAG
hopes to come to a consensus regarding identification of the principal components of a data
management architecture, and, where possible, to come to agreement on the roles and
responsibilities of those components. The RTAG plans further to identify which components
might be candidates for shared implementation, and which are likely to be experiment-specific.
From among the components that could in principle be common to the experiments, the RTAG
proposes to identify those that should be given the highest priority as the LCG seeks to initiate
common development efforts, as well as to indicate which components are expected to come
from (other) grid projects.

The limited time available to the RTAG precludes treatment of all components of a data
management architecture at equal depth. The RTAG will propose areas in which further work,
and perhaps additional RTAGs, will be needed. Consonant with the guidance from the SC2, the
RTAG has chosen to focus its initial discussions on the architecture of a persistence management
service based upon a common streaming layer, and on the associated services needed to support
it.

While our aim is to define components and their interactions in terms of abstract interfaces that
any implementation may support and must respect, it is not our intention to produce a design that
requires a clean-slate implementation. For the streaming layer and related services, we plan to
provide a foundation for an initial common project that can be based upon the capabilities of
existing implementations, and upon ROOT’s streaming capabilities in particular. While the
extent of new capabilities required of an initial implementation should not be daunting, we do not
wish at this point to underestimate the amount of repackaging and refactoring work required to
support common project requirements. Resource estimates are expected in the final RTAG report.

Persistency Framework RTAG - Final Report

– 5 –

2.3 RTAG timetable

The RTAG convened in ten three-hour sessions during the weeks of 28 January, 18 February, and
11 March, and delivered an interim report to the SC2 on 8 March. An additional report was
provided during the LCG Launch Workshop on 12 March. A final report to the SC2 is expected
on 5 April 2002.

Persistency Framework RTAG - Final Report

– 6 –

3 Scope and Requirements

3.1 Scope

The intention of the RTAG is to address all types of LHC data used in offline event processing—
simulation, reconstruction, and analysis—including associated metadata. While the persistence
infrastructure we propose must suffice to support construction and operation of LHC-scale event
stores, we do not propose an infrastructure specialized to event data—it should be suitable for
event and non-event data (geometry, detector description, conditions) alike.

3.2 Principal use cases

This RTAG has, admittedly, considered use cases principally from specialists’ viewpoints, e.g.,
from the point of view of a developer of an experiment’s event processing framework, so that, for
example, a use case might be “store the event currently in my (experiment-specific) transient
object cache, saving only the constituent data objects that I have designated.”

For high- level use cases, we refer the reader to the large number of examples gathered for the
Hoffmann review, in experiment-specific computing technical proposals, and in many grid
projects (e.g., by WP8 for the EU DataGrid).

3.3 Requirements

3.3.1 Language

Transient event models for all LHC experiments are currently implemented in C++, and it is a
requirement that any near-term implementation support saving and restoring the states of C++
objects efficiently. Multilanguage environments are, however, a reality (e.g., FORTRAN for
simulation, Java for visualization and analysis), and multiple languages may infiltrate event data
models as well. Designs must not assume that either the implementation language or the type of
an object being restored is the same as that of the object whose state was saved.

3.3.2 Scalability

The data scale of LHC experiments—hundreds of megabytes per second, petabytes per year,
thousands of processors processing and contributing data, globally distributed analysis by
thousands of physicists—has been well documented elsewhere. An LHC persistence
infrastructure must support data storage and retrieval at these scales.

3.3.3 Schema evolution

The term “schema evolution” is used rather loosely in HEP circles, meaning, variously,

− The ability to change the definition of a transient class Ti (without changing its name), and to
build such a revised Ti from the same persistent state representation Pj that was previously
used;

Persistency Framework RTAG - Final Report

– 7 –

− The ability to change the persistent representation Pj of the state of a transient object type Ti,
and to build objects of type Ti from both the old and new state representations;

− The ability to update persistent data, changing from an old representation Pj to a newer one,
without compromising the integrity of any persistent pointers to such data;

− Various combinations of the above, particularly of the first two.

The design of a persistence infrastructure must recognize and support the potential for evolution
of both transient models and persistent representations.

When the state of an object of transient type Ti is saved, a particular persistent representation Pi
is chosen. That representation may be automatically generated from the definition of Ti, and a
“converter”—the code to save and restore state using this representation--may be generated as
well. This model, in which there is a one-to-one correspondence between transient types and
persistent representations (at least within a single storage technology), is expected to be a typical
use of persistence services.

Over time, better representations Pj may be found and implemented, and the definition of Ti may
change as well. It is in fact possible that transient models may advance sufficiently that the object
to be initialized from a state representation Pi may be of a type altogether different from Ti.

These considerations imply the following requirements.

− The architecture should assume that a single transient type Ti may be restorable from many
different persistent representations {Pj}.

− The architecture should assume that a particular persistent representation Pj may be used to
initialize transient objects of various types {Ti}.

The consequence of the previous is that on reading, the persistence infrastructure should not
presume that the type of the transient object that will be initialized can be deduced simply by
inspecting the persistent representation that will be used as input.

3.3.4 Multi-technology persistence

While we propose that a near-term common project focus on a single persistence technology for
event data streaming, the design must not preclude use of multiple storage technologies,
alternatively or in tandem, nor should components make assumptions about the implementation
technologies used by the components with which they interact.

The use of relational database technologies to manage access to streaming layer data provides an
opportunity to develop an approach that supports coherent management of other experiment data
as well—XML geometry files and output of legacy FORTRAN simulations are two examples.

Even in a single-streaming- technology/single-relational- implementation environment, certain
data may appear in either or both layers, and transparency of access, independent of storage
technology, must be provided.

Persistency Framework RTAG - Final Report

– 8 –

3.3.5 Control of physical placement

The persistence framework must support writing different events to different physical locations
(e.g., to different files). This requirement is motivated principally by the need to support multiple
physics streams.

The persistence framework must support writing different data objects within an event to
different physical locations, e.g., to allow physical separation of raw muon data from raw
calorimeter data.

Typically the control of the placement is not with the creator of the object. An algorithm creating
an event object should not have to decide where it should be placed and not even if the object will
be saved. Physical placement control should be done elsewhere and be configurable at run time.

3.3.6 Navigability

The experiment framework must provide transparent navigation to end-user physicists through
object relationships, and must support load on demand. Therefore, the role of the persistence
service is to provide persistency for (experiment-specific) transient data models allowing this
transparent navigation. In addition it is desirable to be able to record associations among transient
objects in the persistence layer in a way that allows navigation from one persistent object to
another without reference to the experiment framework.

Transient data models will have associations between objects embedded in larger persistence-
capable objects, e.g., between the tracks of a TrackCollection and the hits of a HitCollection, or
between reconstructed particles and TruthParticles embedded in a generator event. It must be
possible to create and persistify a reference to such an embedded object. From such a reference,
it must be possible to navigate to the containing object in a manner independent of the
experiment-specific framework. It is understood, however, that navigation to the embedded
object itself may not be possible in certain cases without application-specific knowledge, as, for
example, in the case that an embedded particle is indexed in the transient data model by a map or
other nontrivial data structure.

3.3.7 Data Modeling

Experiments at this stage in their software development tend not to think about data models for
their data stores. The viewpoint is that the persistent event representation simply echoes the
transient one, with the addition of placement control to support physical clustering of objects
likely to be requested together. This approach is well suited to projects in their development
stages, and is well matched to automatic generation of converters and persistent representations.
The architecture should, however, support the possibility of explicit persistent data modeling
distinct from any specific transient views of data.

3.3.8 Other functional requirements
T - transactional consistency
C - crash recovery
P - data partitioning in time
R - support for read-only replication
L - support read only (e.g. laptop) sub setting/caching

Persistency Framework RTAG - Final Report

– 9 –

4 Architecture Design
The architecture of the persistency system is described in terms of the components we have
identified and their interactions. A software component is a part of the system, which performs a
single function and has a well-defined interface. Components interact with other components
through their interfaces.

4.1 Design Criteria
Here is a list of the main design criteria we have discussed in the RTAG so far:

− Abstract Interfaces. Components of the Persistency Framework should implement abstract
interfaces and be as technology neutral as possible. Several implementations of a single
component are not encouraged but they should be possible.

− The interaction between components should happen exclusively through the public and
agreed interfaces. This is to avoid private communication between components (e.g. static
storage) that will make impossible a later replacement of an implementation with another one.

− Typically the “end-user” (physicist writing a piece of code) does not interact directly with the
framework abstract interfaces. A thin layer to hide the technicalities of such interfaces should
be envisaged.

− Re-use existing implementations. If implementations already exists providing the required
functionality they should be used to provide the initial implementation.

− We target C++ as the main programming language, however we should avoid constructions,
which will make impossible the migration to existing or future new languages.

− Noninvasiveness. Transient objects whose states will be saved/restored will be compiled and
linked without knowledge of any specific persistence technology.

4.2 Service model

Consider as an example a logical filename to POSIX filename mapping service. For an on-
demand request, this may involve consulting a replica catalog to get a list of physical filenames,
choosing the best instance, initiating a transfer if necessary, and finally providing a local
filename. For a logical file that has been provided as part of the job description using EDG WP1
tools, the same service may be provided by simply consulting the BrokerInfo file through an
EDG-provided interface to find the physical instance that has already been chosen for this job—
no grid catalog lookups are required. Both approaches should provide the same service interface
to the user—indeed, these may be implemented as a single service, with the choice of how to
deliver the service made by the implementation.

In our vision of a hybrid architecture, the same may be true, for example, of a service to find a
logical file that can resolve a specific Ref. In principle, the RefàLFN translation may require
querying a relational layer, but if the required resources have been marshaled and delivered in
advance (e.g., to a laptop), we intend that the same service interface (the same service!) should be
able to do the translation without consulting the relational layer.

Persistency Framework RTAG - Final Report

– 10 –

4.3 Interface model

One essential ingredient when designing the architecture of a system is to agree upon the
interface model. The interfaces of the different software components that collaborate to provide
the high- level functionality are specified according to this interface model. Current design
practice at the architecture level is to favor abstract interfaces when building collaborations of
various classes. This is the way we can best decouple the client of a class from its concrete
implementation. An abstract interface in C++ is a class where all the methods are pure

virtual.

The interface model should define some practical guidelines for defining interfaces. The
following are issues to take into account:

− Interface naming. It is a good practice to have a convention for naming interfaces. In this
way, developers will identify immediately what C++ classes are interfaces.

− Interface hierarchy. For example it is convenient to derived form a common base class
interface.

− Concrete classes implementing multiple interfaces as it is the case for most modern
languages.

− Interface identification and versioning. In theory, an interface is a contract between a class
providing a service and the clients using the service. The interface should never change, but
in practice this is very difficult to achieve since we do not know at the beginning the required
functionality. To allow the detection of changes and eventually take corrective actions, it is
convenient to version interfaces that can be queried at run-time.

− Reference counting. Since the services provided through abstract interfaces may be used by
several clients, the interface model should define a mechanism for discarding services that are
no longer needed. A possible mechanism could be based on reference counting.

Note: There is less than complete agreement on some of the points raised in the above section on an Interface model,
particularly with regard to reconciling this approach with the efficient use of existing software. Some of the points,
moreover, apply to essentially all components developed under the aegis of LCG common projects, not simply to a
persistence infrastructure. We propose that these issues be taken up in the PEB’s proposed “architects’ forum.”

4.4 Other Issues

4.4.1 Object Navigation

The framework should provide transparent navigation through object relationships with load on
demand. In the transient object model, this relationship is provided by the transient type Ref<T>
that is able to reference any persistent-capable object (or any object in general).

This Ref can be specialized and optimized for cases such as that T inherits from some sort of
Storable-Object (d_obj, PObject, TObject) or if the referenced object is allocated using some ad-
hoc memory manager. A Ref<T> should be buildable from a memory-pointer or from a Token
returned by the persistent manager as a result of a streaming operation.

Persistency Framework RTAG - Final Report

– 11 –

Ref<T> should be a persistent capable type by itself, i.e., mappable to a persistent layout PREF
that may be technology specific.

A Ref<T> should be able to reference an object embedded into a container (such as an element of
vector<T>) A collection of Ref<T> may be optimized to elide any common part.

A mechanism should be provided to ensure that:

− an object embedding a Ref<T> can be streamed before the object the Ref<T> references

− the use of Ref<T> does not imply noticeable performance penalties in case the embedding
object and/or the referenced object are not eventually streamed

− an object not yet present in memory is properly retrieved when a corresponding Ref<T> is
dereferenced

− the Ref<T> should not directly depend on any meta-data stored on files (storage-units?)
different than those where the embedding object or the reference object are stored (no
recompilation if the file catalog implementation changes)

− there should exist a technology- independent persistent representation of a Ref<T> (PREF);
however, a proprietary, optimized, representation is not only allowed but encouraged.

The ability to generate a unique logical identifier, robus t against relocation and cloning of the
target object, is required.

Relocation or a cloning operation may be requested to generate a different PREF. The project is
invited to evaluate the pro and cons of a PREF based on the physical location of the referenced
object. Such an implementation may also be required as benchmark against other, more flexible,
solutions. A collection of PREF may be optimized to elide (store once) any common part.

4.5 Component breakdown

Based on the discussions in the numerous meetings of the RTAG, we have identified a number of
components in the persistency framework. The idea in this section is to enumerate them and
describe the expected functionality of each one and interactions with the other components.
Figure 1 shows the main components of the framework.

Persistency Framework RTAG - Final Report

– 12 –

DictionarySvcStreamerSvcStreamerSvc

PersistencyMgr

IReflection
StreamerSvc DictionarySvc

StorageMgr

CacheMgr

IPReflection

FileCatalog

ICnv

IReadWrite

IPers

C++

PlacementSvc

IFCatalog

IPlacement

DictionarySvcDictionarySvcStreamerSvcStreamerSvcStreamerSvcStreamerSvc

PersistencyMgrPersistencyMgr

IReflection
StreamerSvcStreamerSvc DictionarySvcDictionarySvc

StorageMgrStorageMgr

CacheMgrCacheMgr

IPReflection

FileCatalogFileCatalog

ICnv

IReadWrite

IPers

C++

PlacementSvcPlacementSvc

IFCatalog

IPlacement

Figure 1 Component Diagram. This shows a three-layer organization of services.

4.5.1 Persistency Manager

The Persistence Manager is the principal point of contact between experiment-specific
frameworks and persistence services. It is this service through which requests to store the state of
an object, or to retrieve the state of an object, are made.

When an object O (of type T) is streamed, the persistence manager may be asked to return a
Token that can be used at a later time to restore the state of that object. This token should be
externalizable, i.e., representable and storable by a persistence mechanism different from the one
that produced it (including human means such as writing it down on a piece of paper). Here
“token” can be thought of as the persistent address of an object. We have chosen another word to
avoid discussions of whether this is a physical address, a pseudo-physical address (like an
Objectivity ooRef), or a name or key understood by the underlying technology.

The Persistence Manager should provide mechanisms to allow assignment of user-defined
identifiers to a streamed object, and should provide optimized mechanisms to retrieve objects
matching requests defined in terms of such identifiers.

4.5.2 Streaming or Conversion Service

A Conversion Service consults the transient and persistent representation dictionaries (see below)
to produce a corresponding persistent (or "persistence-ready") representation of a transient data
object, or to produce a transient object from such a representation. When the "converter" is a
streamer, the persistence-ready representation is a variable-length stream of bytes.

Persistency Framework RTAG - Final Report

– 13 –

Because of our implementation technology choices, we expect that automatic generation of
streamers, like automatic generation of persistent layouts, will be possible with the components
delivered by this initial project, with transient object descriptions as a starting point.

4.5.3 Dictionary Service

We expect (at least) two dictionaries, one describing transient classes to be made persistent, and
the other describing persistent representations. The transient class dictionaries will be language-
specific, and we expect a dictionary facility for C++ class descriptions as a starting point. It
should be a component capable of producing persistent representation descriptions from transient
ones, so that persistent dictionary entries may be generated automatically.

The transient data dictionary service, which is programming language specific, should provide an
interface to obtain reflective information about classes and objects.

− The API will typically consists of a number of interfaces and [meta]classes that describe the
object model. These classes should be as neutral as possible and no t be dependent of the
storage implementation technology. The expected functionality should be similar to the
reflective capabilities that are provided by modern languages (e.g. Java, C#).

− The API should primarily be optimized for the retrieval of the reflective information by the
"streamer service". We expect that the dictionaries will not be specific to a particular
streaming technology. Two streaming technologies may use the same dictionaries, a non-
streaming persistency technology may use the same trans ient class dictionary but a different
persistent one; other services (e.g. interactive services, browsers, remote invocations, etc.)
may also be clients.

− We expect no assumptions about how dictionary entries are generated--this may be automatic,
or entries may be hand-coded. An API for filling the reflective information should be
available. We expect that dictionary entries will be neutral with respect to the input format
used by the tools that generate them. This would allow experiments to choose their own
mechanism for describing their object models (e.g. using C++ header files, IDL, XML, debug
information, etc.). This part of the reflective API is not provided typically by Java and C#
since it is the compiler that does the filling work directly.

− The C++ dictionary API should support the standard C++ constructs (e.g., inheritance,
methods, data members, accessibility, templates, etc.)

4.5.4 Store Manager

The Store Manager is responsible for storing a variable- length stream of bytes into the persistent
store (file?) and for later being able to retrieve the same variable-length stream of bytes. It is
responsible for managing the buffers currently in use and for storing/retrieving them in/from the
proper file.

The Store Manager should provide asynchronous writing capability like any standard streaming
technology. It should also provide a "flush" (seek) functionality which writes all open buffers and
all required metadata on file. It should ensure the ACIDity of the operation. In particular, once
flushed, the data should be available in read-only mode to any other process.

Persistency Framework RTAG - Final Report

– 14 –

The Store Manager should be able to store more than one "object" per buffer. The details of the
collaboration among Persistency Manager, the Streamer and the Store Manager itself required to
achieve such a functionality is left to the design and implementation of the final product.

4.5.4.1 Files

In the following we call file a "collection of bytes suitable to be stored on disk" that looks to the
user (in this case the store manager) as a sequential, randomly addressable, stream of bytes.

In C++ terms a file should be managed by a "iostream" class and addressable using iostream-
iterators. Our current reference is C++ std::ios, even if one can limit oneself to files such as
those present in current file systems (UNIX, Windows).

Besides the raw file format, that we assume to be completely transparent even to the Store
Manager itself, the file will have a physical format determined by the store manager in use. Our
current reference is the ROOT file format. We assume such a file format to be fully described and
documented. Any change should be approved by all parties involved.

The default logical structure of the file may be a "name-tree" that mimics the Unix file system (in
its looks and feel). The leaves will be "logical-records" (in the following also called "buffers").
Again the reference here is ROOT.

The metadata describing the actual logical structure of the file, (including persistent dictionary
and any eventual object location table based on OID) should be stored in the corresponding file.
It should also be possible to store and use this very metadata in other contexts. In particular one
should be able to extract them and store them in a "metadata database" (object catalog?)
implemented using a different technology.

4.5.4.2 Client/server architecture (on the grid)

The Store Manager should support client/server architectures. In particular it should be ready to
support clever servers able to manage and resolve all metadata information locally avoiding the
network and data-server load caused by multiple clients loading, for each "transaction," catalog,
file, and object metadata.

4.5.4.3 Other Store Manager issues
− Storage organization adapted to data nature. The organization could be different for event

data and detector conditions data.

− Different implementation adapted to data nature (event vs. detector vs. catalog), running
environment (laptop, datagrid, etc.), activity (official production, software development, etc.)

4.5.5 Cache Manager

The Cache Manager is responsible for the access to for the lifetimes of transient objects whose
states may be saved and restored. It is the Cache Manager (or an associated service) that
communicates with the Persistence Manager to accomplish transient-to-persistent and persistent-
to-transient conversions, controlling the timing and granularity of conversion requests, as well as
determination of which transient objects are persistence-eligible.

Persistency Framework RTAG - Final Report

– 15 –

The services associated herein with the Cache Manager are today provided by experiment-
specific frameworks; hence, the scope of Cache Management services also varies by experiment.

4.5.6 Placement Service

The role of the Placement Service is to support control of physical clustering of data on output,
by providing the Persistence Service with guidance regarding where to write an object (e.g.,
which file or which database or which container), equivalent to the “&where” hint provided to
persistent “new” operators in object databases.

The Placement Service addresses the requirement that it must be possible to write different events
to different physical locations (e.g., corresponding to different physics streams), and to write
different data objects within in event to different physical locations as well.

4.5.7 File Catalogue

The service must provide the mapping for resolving any externalizable reference to a physical
file name. It defines the list of all files which participate in one data store and their logical
attributes (owner, read-only, last update....). It is used during the process of dereferencing a smart
pointer. This component can be broken into two steps: reference to logical file identifier and from
logical file identifier to the physical file (Posix file name) .

4.5.7.1 ReferenceàLFN Service

A service must be provided to map an externalizable Reference to a logical filename (LFN), in
support of a file-based storage management layer in particular. We do not anticipate that an
implementation of a Reference will necessarily contain a complete logical filename.

4.5.7.2 LFNà{PFNà}àPosixName Service (replica catalog)

This service maintains, for a list of (grid exposed?) files, the mapping to their physical
counterparts. The main use case is to translate logical file name into a physical file name of a host
close to the client. It should possible to query/browse all available replicas. This is very closely
related to grid services, but may not be an identical instance (e.g., files which are not exposed to
grid, but accessed in production).

We expect that such a component will be provided by other projects. Such a service is already
provided in the EDG Testbed1 toolkit via the BrokerInfo service, which allows applications to
determine the particular local files that have been identified by the WP1 scheduler on the basis of
input LFNs listed in the job description. For more general access, one can query replica catalogs,
choose appropriate replicas, transfer files, and so on.

4.5.8 Event Collection Manager

The Event Collection Manager is responsible for maintaining a collection of persistent event
references and provide sequential (forward, backward, random?) iterators to access the contained
objects (events). Collection by containment e.g. within a file (or group/chain of files) should be
supported as well (e.g., via proxy objects). Transparent support of hierarchical collections
(collections of collections) should also be supported. This components can be generalized in

Persistency Framework RTAG - Final Report

– 16 –

many ways, e.g., collections for any kind of persistent object or polymorphic collections of
objects.

4.5.9 Run and Event Collection Catalogue

This component maintains the metadata (mainly physics characterization) for runs or event
collections. It maintains a catalogue of available runs or event collections together with their
metadata (perhaps as (a table of) name/value pairs). The catalogue do not have to implemented
using the same storage technology as the event data. This catalogue is used by end-user physicists
to formulate a high level data selection based on the meta data information. Example: get event
collection where name = "xyz” where creator = me where ...

4.5.10 Production Workflow Manager

This component maintains a consistent view of the status of a production activity at one or more
data production sites. It keeps track of used job templates, job configuration and status, set of
in/output files, the success or failure of machine job and used resources (time, cpu time, memory,
disk space). The service allows one to query/browse jobs by type (sim, evgen,...), status
(completed, failed,...) or other job related metadata (produced files, originating host, processing
host, etc.). Some grid projects propose related components.

4.5.11 Detector Geometry and Conditions Service

This service maintains consistent sets of geometry representations and detector conditions
(calibration and environmental parameters) used for simulation, reconstruction, etc. The kind of
data this service maintains has a time interval validity and is versioned. Example use cases are:

− get quantity X valid at time T as obtained by processing version V

− may need to support hierarchical structured naming space for X

− may need to support consistent versioning across many X

4.5.12 Job Configuration Service

This service maintains consistent versions of the central configuration parameters of production
and user jobs. Examples of these parameters are: event generator parameters, simulation
parameters, used geometry version, reconstruction parameters and version, etc.

4.5.13 Hierarchical Mass Storage System

This component maintains bulk data files (independent of Storage Manager), and is implemented
typically as multi- level storage. It should support media migration and file level import/export.

4.5.14 Data Analysis Warehouse
This component maintains a (read-only) view of all data which is relevant for end user analysis. It
should support reclustered and indexed data representations for specific needs of fast/interactive
analysis, parallel query evaluation and many concurrent users.

Persistency Framework RTAG - Final Report

– 17 –

Persistency Framework RTAG - Final Report

– 18 –

5 Specific recommendations to the SC2

5.1 Recommendations for near-term work

We recommend the commissioning of an initial common project to develop a common object
streaming layer and associated persistence infrastructure. The project should deliver the
components of a common data management architecture. These components include a common
object streaming layer and several related components to support it, including a (currently
lightweight) relational database layer. Specifications for such a product appear in the following
section.

The authors acknowledge at the outset that the scope of the proposed project is only one part of a
complete data management environment, one with enormous potential for commonality among
the experiments. This limited scope for a first common project in data management is intentional.

Note that dictionary services are included in the near-term project specification. The RTAG
recognizes that while the persistence infrastructure imposes many requirements upon dictionary
services, it is not the only potential client of such services, and that another RTAG to consider the
requirements of those additional clients and their implications for the design of dictionary
services may be appropriate.

5.2 Recommendations regarding potential common components not
addressed in detail in this report

Conditions databases:

We agreed that an interval-of-validity-based retrieval infrastructure is necessary, and that a
common service interface should be possible. One could imagine the service itself being
implemented in a relational technology, managing access to objects whose persistence may or
may not be provided by the proposed common streaming infrastructure. We did not reach
consensus on a potential common project, though the ATLAS and LHCb are already involved in
joint work in this area, and hope to see it continue.

5.3 Longer-term R&D recommendations

The principal focus of our work has of necessity been on near-term projects, but the RTAG
strongly recommends that the LCG include longer-term R&D as an important component of its
effort profile and task portfolio. Specific recommendations here include tracking of emerging
trends and technologies, and of potential alternatives and fallback solutions to our proposed
common approaches, including continued explorations at a low level of effort with Oracle9i. To
support the LHC experiments’ ability to contribute to such prototyping, we recommend that
development of a procedurally lightweight installation of Oracle9i for the standalone laptop—no
more difficult than installing an experiment’s own software—be investigated.

Persistency Framework RTAG - Final Report

– 19 –

6 Product Specification for a near-term common project

6.1 Charge to a first common project on persistence

The charge to this initial common project is to deliver the components of a common file-based
streaming layer sufficient to support persistence for all four experiments’ event models, with
management of the resulting files hosted in a relational layer.

While the design we propose is intended to be quite general, respecting abstract interfaces,
allowing multiple persistence technologies, and permitting multiple implementations, we propose
delivery of a single implementation based upon specific technology choices listed in the next
section.

Persistence support means storage and retrieval of events currently defined in C++ without
intrusion into experiments’ current event models, and without requiring run-time or link-time
dependence between those models and this project’s persistence technology choices. Event
persistence support, in addition to simple storage and retrieval, includes placement control
(physical clustering). Since physics applications rarely process exactly one event, the project
must also deliver support for creation of and iteration over event collections.

“Management” of the resulting files includes maintaining queryable associations between event
collections and the logical files that hold event data, and provision of services to resolve
references to and between objects in terms of the logical files in which the corresponding objects’
persistence states reside.

Definitions of specific components, and explicit requirements, appear in the following sections.

6.2 Implementation Technologies

The initial streaming layer should be implemented using the ROOT framework’s I/O services.

Components with relational database implementations should make no deep assumptions about
the underlying relational technology at this point. The RTAG has chosen not to recommend a
specific relational technology for an initial implementation, but has not intentionally proposed
anything that precludes implementation using such open source products as MySQL.

6.3 Components

6.3.1 Persistence Manager

The Persistence Manager is the principal point of contact between experiment-specific
frameworks and persistence services. It is this service through which requests to store the state of
an object, or to retrieve the state of an object, are made. The functionality required is described
in 4.5.1.

Persistency Framework RTAG - Final Report

– 20 –

6.3.2 Streaming or Conversion Service

A streaming conversion service consults the transient and persistent representation dictionaries to
produce a corresponding persistent (or "persistence-ready") representation of a transient data
object, or to produce a transient object from such a representation. The functionality required is
described in 4.5.2.

6.3.3 Dictionary Service

The dictionary service should provide an interface to obtain reflective information about classes
and objects. It should describe transient classes to be made persistent and should also describe
their persistent representations. The functionality required and the design guidelines are described
in 4.5.3. This component is included in the near-term project specification but the RTAG
recognizes that the streaming service is not the only potential client of such service, and that
another RTAG to consider the requirements of those additional clients and their implications for
the design of dictionary services may be appropriate.

6.3.4 Store Manager

The store manager is responsible for storing a variable- length stream of bytes into the persistent
store and later for retrieving the same variable- length stream of bytes. The functionality required
is described in 4.5.4.

6.3.5 Cache Manager

While we recognize the potential benefits of a common cache management component, we do
not recommend delivery of such a component in this initial project. We wish to ensure that our
initial deployment supports all four experiments’ current frameworks and event models, and to
ensure conformance to the project’s abstract interfaces; for these reasons, we propose to defer
potential common work in the area of transient object cache management.

6.3.6 Placement Service

The role of this component is to support control of physical clustering of data on output, by
providing the Persistence Service with guidance regarding where to write an object. We
recognize that we have not done a sufficient job of describing how the service should work. A
preliminary description is in 4.5.6.

6.3.7 Event Collection Services

The project should provide support for explicit event collections—not simply collections by
containment (e.g., “the events in this file”), but rather, collections at least equivalent in
functionality to lists of References to events. The functionality required is described in 4.5.8.

6.3.8 References and Reference Services

The framework must provide transparent navigation through object relationships, and must
support load on demand. The functionality required is described in 4.4.1.

Persistency Framework RTAG - Final Report

– 21 –

6.3.9 File Catalogue Services

6.3.9.1 ReferenceàLFN Service

The framework must provide a service to translate object references (or part of) to logical file
name (LFN) implemented using a relational database. Details of the required functionality are
described in 4.5.7.1. We propose that an implementation of this service interface be provided in
such a way that runtime access to the relational layer is not, however, a requirement—a “pre-
query,” for example, may resolve ReferenceàLFN mappings, akin to what BrokerInfo services
provide in EDG, so that runtime relational queries are not required.

6.3.9.2 LFNà{PFNà}àPosixName Service

An LFNàPosixName service is required. We expect that such a component will be provided by
other projects (e.g. EDG). This project requires a standard service interface to such information.
Details of the required functionality are described in 4.5.7.2.

6.4 Resource Estimates

We have elected to omit resource estimates, since we did not have sufficient time in RTAG
sessions to discuss them.

Persistency Framework RTAG - Final Report

– 22 –

