
����MXOL�����

�

��������	
�������

�
	��
��

�

%M¡UQ�(QJVLJ

2UDFOH�6HUYHU�7HFKQRORJLHV

This briefing is a quick introduction to the Oracle9i Server. The objective is to give attendees,
who typically are skilled application designers with knowledge of other database products, a
quick overview of the components of the Oracle9i server, but still with high technical contents.

At the end, attendees should be able to choose further reading or training to start development
projects using the Oracle database.

����MXOL�����

�

Page 310. juli 2001

2EMHFWLYHV�

� *LYH�H[SHULHQFHG�GHYHORSHUV�D�TXLFN
WHFKQLFDO�RYHUYLHZ�RI�WKH�2UDFOH�6HUYHU

� 3UHSDUH�DWWHQGLHV�ZHOO�IRU�IXUWKHU�WUDLQLQJ
DQG�RU�UHDGLQJ

� 0DNH�GHYHORSHUV�DZDUH�RI�SURSHU�DSSOLFDWLRQ
GHVLJQ

� 8QGHUVWDQG�KRZ�WKH�2UDFOH�6HUYHU�ILWV�ZHOO
LQWR�PRGHUQ�WKUHH�WLHU�DSSOLFDWLRQ�GHVLJQ�DV
ZHOO�DV�WUDGLWLRQDO�FOLHQW�VHUYHU

����MXOL�����

�

Page 410. juli 2001

� %URDG�YLHZ�RI�FRPSRQHQWV
� $Q�2UDFOH�'DWDEDVH

� 'DWDILOHV��WDEOHVSDFHV
� 7DEOHV��GDWD�W\SHV��LQGH[HV
� 8VHUV��VFKHPD

� $Q�2UDFOH�,QVWDQFH
� 0HPRU\�DQG�SURFHVV�VWUXFWXUHV
� &OLHQW�VHUYHU�FRQQHFWLRQV

� 'DWD�SURFHVVLQJ
� 4XHULHV��GDWD�PDQLSXODWLRQ
� 5ROOEDFN
� 'DWDEDVH�ZULWHV�DQG�UHGR�ORJ
� 5HDG�FRQVLVWHQF\

� 64/�SURFHVVLQJ�DQG�FOLHQW�LQWHUIDFHV
� 6XPPDU\

$JHQGD

����MXOL�����

�

Page 510. juli 2001

� %URDG�YLHZ�RI�FRPSRQHQWV
� $Q�2UDFOH�'DWDEDVH

� 'DWDILOHV��WDEOHVSDFHV
� 7DEOHV��GDWD�W\SHV��LQGH[HV
� 8VHUV��VFKHPD

� $Q�2UDFOH�,QVWDQFH
� 0HPRU\�DQG�SURFHVV�VWUXFWXUHV
� &OLHQW�VHUYHU�FRQQHFWLRQV

� 'DWD�SURFHVVLQJ
� 4XHULHV��GDWD�PDQLSXODWLRQ
� 5ROOEDFN
� 'DWDEDVH�ZULWHV�DQG�UHGR�ORJ
� 5HDG�FRQVLVWHQF\

� 64/�SURFHVVLQJ�DQG�FOLHQW�LQWHUIDFHV
� 6XPPDU\

$JHQGD

����MXOL�����

�

Page 610. juli 2001

%URDG�YLHZ�RI�FRPSRQHQWV

2UDFOH�VHUYHU

$SSOLFDWLRQ�6HUYHU

7UDGLWLRQDO�&OLHQW

,3&�RU�QHWZRUN�FRQQHFWLRQV

The broad view of an Oracle Server and the related components show:

• The 2UDFOH�6HUYHU itself, which is were the database resides. In this picture, the server is
simply considered a “black box”, which most of the rest of this presentation looks inside.

• Systems connected to the Oracle Server. This can be either traditional FOLHQWV, directly
connected to the server, or it can be $SSOLFDWLRQ�6HUYHUV, which run some application code, and to
which clients connect (not shown). In this entire presentation, the term FOLHQW is used throughout,
as the behaviour of a traditional clients and an application server is the same, when seen from the
database server.,

• &RQQHFWLRQV, which are some mechanism by which different processes can communicate. In
practice, this is either physical network connections, often using TCP/IP, or it can be some inter
process communication, e.g. using Unix pipes, when the client and the database server are
actually executing on the same computer. In this presentation, there is no explicit distinction
between a connection over a physical network, and one using inter process communication.

����MXOL�����

�

Page 710. juli 2001

2UDFOH�6HUYHU�FRPSRQHQWV

6\VWHP�*OREDO�$UHD

%DFNJURXQG�3URFHVVHV

$Q�2UDFOH

,QVWDQFH

'DWD�ILOHV

7KH�2UDFOH

'DWDEDVH

Looking into the Oracle server, two major components are seen:

• The Oracle 'DWDEDVH, which is the set of operating system files, where the application’s actual
data are stored (such as customers, orders and order lines), together with Oracle’s own internal
information (such as information about users registered in the database, or tables found in the
database). The Oracle Database as such, cannot be directly accessed in any way (except for
backup) by clients. In contrast to other systems, there is no corelation between the concept of a
user, an application or a file system and an Oracle database; rather, there is often only one
database on each server, and you can even have a single database spanning multiple servers.
This is known as Oracle Real Application Clusters.

• The Oracle ,QVWDQFH, which is a set of memory and process structures, running on a specific
computer. This is the point of access for clients, and the instance is responsible for translating
the SQL calls given by the client, to acual data transfers to and from the database stored in the
operating system files. An Oracle instance is normally associated with an Oracle database, and
those two together make up the Oracle Server. However, an Oracle instance may exist without
being associated with an Oracle database; this is e.g. the case before the database is created or as
an intermediate step during the startup of the Oracle server. An instance cannot be associated
with more than one database, but one database (on a set of physical disks), can be associated with
multiple instances (each on a separate computer), if the actual hardware configuration allow
multiple computers to concurrently access a single set of disks.

• Inside the instance, two important parts are seen: The 6\VWHP�*OREDO�$UHD (or 6*$), which is a
shared memory segment, typically of a size, which is roughly half of the physical RAM available
on the computer. There is no direct access from clients to the SGA. Additionally, there is a set
of�EDFNJURXQG�SURFHVVHV, which are working indirectly on behalf of the clients to do various
specialized tasks, such as clean-up. These background processes are directly attached to the
SGA, and can directly read and write to the disk files making up the database.

����MXOL�����

�

Page 810. juli 2001

� %URDG�YLHZ�RI�FRPSRQHQWV
� $Q�2UDFOH�'DWDEDVH

� 'DWDILOHV��WDEOHVSDFHV
� 7DEOHV��GDWD�W\SHV��LQGH[HV
� 8VHUV��VFKHPD

� $Q�2UDFOH�,QVWDQFH
� 0HPRU\�DQG�SURFHVV�VWUXFWXUHV
� &OLHQW�VHUYHU�FRQQHFWLRQV

� 'DWD�SURFHVVLQJ
� 4XHULHV��GDWD�PDQLSXODWLRQ
� 5ROOEDFN
� 'DWDEDVH�ZULWHV�DQG�UHGR�ORJ
� 5HDG�FRQVLVWHQF\

� 64/�SURFHVVLQJ�DQG�FOLHQW�LQWHUIDFHV
� 6XPPDU\

$JHQGD

An Oracle 'DWDEDVH is the real set of files that make up your database. Remember, that there is
normally a single database on each server, and the Oracle database will therefore normally be by
far the application, that uses most of the available diskspace. The database itself contains both
Oracle’s own internal data, referred to as the Oracle GDWD�GLFWLRQDU\, and it contains the actual
user data of one or more applications.

All data stored in the operating systems files, that make up the Oracle database, can only be
accesed using the Oracle software. The only excpetion to this, is that backup of the Oracle
database can be done by directly creating copies of the files making up the database.

����MXOL�����

�

Page 910. juli 2001

7KH�2UDFOH�'DWDEDVH

'DWDB[

'DWDB�

'DWDB�

'DWDB�

6\VWHP�7DEOHVSDFH

$SSOLFDWLRQ¶V
7DEOHVSDFH��V�

«�PRUH�WDEOHVSDFHV

• All data of the database are stored in 7DEOHVSDFHV, which can be viewed as logical disks. Each
tablespace is made of one or more physical disks, and can have sizes from megabytes to
terabytes.

• Oracle uses a set of standard tablespaces, including the V\VWHP tablespace, which is where
Oracle stores its own internal information about e.g. users, tables and columns. Additionally,
there are standard tablespaces used for e.g. temporary storage, etc. Only the tablespace with the
actual name, V\VWHP, is found right after database creation, other tablespaces, including the
system related ones, are created subseequently.

• Each application (or set of related applications) define one or more tablespaces for storing that
application’s data. The names of these can be chosen freely, and can e.g. reflect application type
such as PDQXIDFWRULQJ��ILQDQFH, or you can have tablespace names reflecting use such as
DSSOBGDWD, and DSSOBLQGH[.

����MXOL�����

��

Page 1010. juli 2001

/RJLFDO�DQG�3K\VLFDO�6WRUDJH

u 'DWD�6HJPHQW
u ,QGH[�6HJPHQW
u 7HPSRUDU\�6HJPHQWV
u HWF�

6HJPHQW6HJPHQW

'DWDILOH

7DEOHVSDFH

'DWDEDVH

6��6HJPHQW�

'DWDILOH��

7DEOHVSDFH

'DWDILOH��

(
[
W
H
Q
W

(
[
W
H
Q
W

��HJPHQW�

(
[
W
H
Q
W

(
[
W
H
Q
W

block

«

7DEOHVSDFHV�are the logcal storage media of an Oracle Database. Each tablespace contains data
from one or more VHJPHQWV, such as the rows of a table, or the index of a table, and each VHJPHQW,
is made up of one or more H[WHQWV�

• The picture shows a tablespalce, that is made up of two physical GDWD�ILOHV.

• There are two segments shown, the yellow one (lightest grey) is made up of three extents, and
the pink (medium grey) contains four extents. These could e.g. be a table and one of its indexes.
The remaining part of the tablespace are unused blocks.

• A segment, including an initial extent, is created when you create an REMHFW, such as a table or
an index, and more extents are added as necessary, when data is inserted.

• Extent size can be controlled at the tablespace level, for each segment individually, or by
explicitly allocating an extent of a certain size. Normally, extent sizes are controlled by Oracle,
by using a bitmap of all used of free extents. Alternatively, extent size and allocation can be
managed by the database administrator.

• Note, there is QRW a one-to-one mapping between tables or indexes and datafiles, although you
can specify, that a specific table is the only one stored in a specific tablespace.

����MXOL�����

��

Page 1110. juli 2001

&RQWHQWV�RI�DQ�2UDFOH�'DWD�%ORFN

+HDGHU

)UHH�VSDFH

'DWD

All data is stored in Oracle blocks, the size of which are defined when the database is created.
Typical sizes are 4kb, 8kb, or 16kb.

Each EORFN contains a header, which includes a directory of rows, and it includes the actual data.
Space management can be applied by the database designer and/or database administrator to
control the amount of free space in each block, that is used to insert new rows or to update
existing rows.

����MXOL�����

��

Page 1210. juli 2001

&RQWHQWV�RI�D�URZ�RI�D�WDEOH

'DWDEDVH
EORFN

5RZ�KHDGHU
&ROXPQ�OHQJWK
&ROXPQ�YDOXH

Each URZ of a table is stored in the database block. The row storage includes a header and
subsequent colun length/column data pairs. A row is completely identified by its URZLG which
consists of database file number (mapped to file name), block number in that file, and row
number within the block.

����MXOL�����

��

Page 1310. juli 2001

2UDFOH�GDWD�W\SHV

&+$5�1���1&+$5�1�
9$5&+$5��1��
19$5&+$5��1�
180%(5�3�6�
'$7(
5$:�1�
%/2%��&/2%�
1&/2%��%),/(
/21*��/21*�5$:
52:,'

9$55$<

7$%/(

5()

'DWD�W\SH

%XLOW�LQ8VHU�GHILQHG

6FDODU 5HODWLRQVKLS&ROOHFWLRQ

Oracle data types are:

FKDU��QFKDU - Fixed length character string, maximum 2000 bytes, but only recommended for
smaller strings.

YDUFKDU��YDUFKDU���QYDUFKDU��QYDUFKDU� - Variable lenght character string, maximum 4000 bytes.
The “2” types are currently identical to the normal types, but the latter may change with an evolving
SQL standard.

QXPEHU - Variable lenght numbers, scale and precision can be specified. The datatype is 100%
identical on all Oracle platforms, which would not be the case with QDWLYH types such as LQWHJHU, or
IORDW. When declaring tables, native types are mapped to corresponding number types. The
maximum precision is 38 decimal digits, and the maximal range is at least ±10125.

GDWH - Fixed length date (7 bytes) with second resolution.

URZLG�- Row identifier, guaranteed to be unchanged during the lifetime of a row.

UDZ�- Raw binary data, maximum 2000 bytes, can be indexed.

FORE��QFORE��EORE- Text or binary large objects, maximum 4Gb, cannot be indexed.

ORQJ��ORQJ�UDZ - Text or binary long data, maintained for compatibility with older versions only.

The normal text datatypes (i.e. without “n”) are stored in the database character set, which must
have the first 127 ASCII characters (or all printable EBCDIC characters) at their usual location; this
is e.g. the case with the variable length Unicode character set. The text datatypes with “n” (nchar,
nvarchar(2), nclob) are stored in the database’s national character set, which can use any character
set e.g. fixed width multi-byte character sets. If the client and the server use different character sets,
the underlying interface will translate between them.

Extensive implicit or explicit data conversion is possible.

In the object relational model, the following extra date types are available

WDEOH�RI��YDUUD\�- Collections, i.e. table or varying arrays of other types.

XVHU�GHILQHG�W\SHV - Records of scalars or other types

UHI - References to objects

����MXOL�����

��

Page 1410. juli 2001

7DEOHV�LQ�2UDFOH

5HJXODU
WDEOH

3DUWLWLRQHG
WDEOH

,QGH[�RUJDQL]HG
WDEOH

7DEOHV in Oracle can be stored in three different ways:

• Ordinary tables are stored with all rows in no particular order. In most cases, one or more
indexes will be used as well.

• In 3DUWLWLRQHG tables, rows of the table are stored in different tablespaces depending on a
SDUWLWLRQ�NH\, e.g. one partition per month of data or one partition per geographical region. This
is typically used with very large databases (100+ Gb), and does e.g. allow database
administrators to backup (and recover) parts of a table at different times.

• In LQGH[�RUJDQL]HG�WDEOHV, an index (typically the primary key index) and the rows of the table
are stored together. This implies a faster access using the index. Multiple indexes can still be
used with this table storage.

����MXOL�����

��

Page 1510. juli 2001

2UGLQDU\�LQGH[HV

,QGH[�HQWU\�KHDGHU
.H\�FROXPQ�OHQJWK

.H\�FROXPQ�YDOXH
52:,'

5RRW

%UDQFK

/HDI

,QGH[�HQWU\

Ordinary LQGH[HV are binary an contains one or more levels of EUDQFK blocks (the top one being
the URRW), and one level of OHDI blocks. Each index entry stores a header, the actual column values
and a rowid pointing at the data block. In case of an index organized table, the rowid part is
replaced by the full row of the table.

����MXOL�����

��

Page 1610. juli 2001

%LWPDSSHG�LQGH[HV

�%OXH���������������������!
�*UHHQ���������������������!
�5HG���������������������!

�<HOORZ���������������������!

key bitmap

Table

Index

In a ELWPDSSHG�LQGH[, the index tree contains (compressed) bitmaps rather than rowid’s. Each
bitmap lists all rows that have the indexed column identical to the index value. Bitmapped
indexes are good for low-cardinality columns, i.e. columns where only few different values exist.

����MXOL�����

��

Page 1710. juli 2001

2UDFOH�VFKHPD�DQG�XVHUV

PERSONNEL ACCOUNTING SYS

Database

Application

Owner/
Schema

Objects Objects Objects

PERSONNEL ACCOUNTING SYSTEMTablespace

End
User

Charles Henry JohnPaul OperatorMary

Since there is typically only one Oracle database on each server, Oracle must contains means to
cotrol access at a level different from typical operating system level. Oracle has the concept of
XVHUV, who are real persons allowed to access data in the database and VFKHPD, which are pseudo-
users actually allowed to create objects such as tables or indexes.

A database XVHU, is an identified person, who can log in to the database. Each database user has a
username and a password, and a special user is the operator who can do system administration.

All objects (tables, indexes, stored procedes, etc) of the database belong to a specific VFKHPD.
Typically (but not necessarily) each application using the database has a schema (and one or
more tablespaces) associated with it, and access rights are granted by the application owner
schema to the actual users of that application.

Note, that in the current version of Oracle9i (9.0.1) a user and a schema are identical, but it will
be different to clearly distinguish application owners and actual users in a later release.

����MXOL�����

��

Page 1810. juli 2001

� %URDG�YLHZ�RI�FRPSRQHQWV
� $Q�2UDFOH�'DWDEDVH

� 'DWDILOHV��WDEOHVSDFHV
� 7DEOHV��GDWD�W\SHV��LQGH[HV
� 8VHUV��VFKHPD

� $Q�2UDFOH�,QVWDQFH
� 0HPRU\�DQG�SURFHVV�VWUXFWXUHV
� &OLHQW�VHUYHU�FRQQHFWLRQV

� 'DWD�SURFHVVLQJ
� 4XHULHV��GDWD�PDQLSXODWLRQ
� 5ROOEDFN
� 'DWDEDVH�ZULWHV�DQG�UHGR�ORJ
� 5HDG�FRQVLVWHQF\

� 64/�SURFHVVLQJ�DQG�FOLHQW�LQWHUIDFHV
� 6XPPDU\

$JHQGD

The Oracle ,QVWDQFH is a set of processes and shared memory. The instance is can be running, in
which case Oracle is available, or stopped, in which case Oracle is unavailable. When the
instance is running, certain data structures in shared memory and certain processes are seen.

����MXOL�����

��

Page 1910. juli 2001

6\VWHP�*OREDO�$UHD

6KDUHG�SRRO

/LEUDU\
FDFKH

'DWD
GLFWLRQDU\
FDFKH

%XIIHU�FDFKH

6*$

The large shared memory segment, the SGA, contains the following major components:

• The buffer cache, which is a cache of disk blocks, very similar to the file system cache found in
most operating systems. Blocks are always read and written in sizes of the Oracle Block Size,
which is defined, when the database is created.

• The shared pool, which contains two main components:

• The OLEUDU\�FDFKH, which is a cache of SQL statements, etc.

• The GLFWLRQDU\�FDFKH� which caches Oracle own internal information, such as
information about users and tables.

• As a very rough rule of thumb, the buffer cache and the shared pool, which by far are the largest
of the SGA, will each make up little less than half the total SGA size.

• Other parts of the SGA contain information about currently running processes, locks, etc.

The use of some of the background processes will be explained later.

����MXOL�����

��

Page 2010. juli 2001

&RQQHFWLQJ�D�FOLHQW�WR�WKH�VHUYHU

,QVWDQFH

6*$ 6KDUHG�SRRO

/LEUDU\
FDFKH

'DWDEDVH
�EXIIHU
FDFKH

'DWD
GLFWLRQDU\
FDFKH6HUYHU

SURFHVV

�

'DWDEDVH

&OLHQW

• The FOLHQW process runs in its own address space (actually as its own operating system process,
quite often on a separate computer), completely separated from the Oracle Instance by the
network or the inter process communication. Hence, the client cannot attach to the SGA, and
cannot read or write to the database files.

• The VHUYHU process, which executes SQL statements sent from the client process, executes
within the address space of the SGA, and within the priveledge space of the database, and can
hence get and modify information in the SGA, and can read and write to the database files.

• Full security is guaranteed by the Oracle security mechnisms and the SQL language.

����MXOL�����

��

Page 2110. juli 2001

6WDUWXS�DQG�FRQWURO�RI�2UDFOH

6HUYHU
SURFHVV

6HUYHU
0DQDJHU

,QVWDQFH

6*$ 6KDUHG�SRRO

/LEUDU\
FDFKH

'DWDEDVH
�EXIIHU
FDFKH

'DWD
GLFWLRQDU\
FDFKH

�

'DWDEDVH

64/!�FRQQHFW�V\V�V\VBSDVVZRUG

64/!�VWDUWXS�SILOH LQLW;;�RUD

LQLW;;�RUD

Right after system startup, only the Oracle GDWDEDVH will exist; the LQVWDQFH will not be running.
To start the instance, a user with DBA authority connects to a server process using either the
6HUYHU�0DQDJHU utility or a GUI tool such as Oracle Enterprise Manager. The utility will read a
parameter file, which has information about different things such size of the buffer cache and the
shared pool, and about the maximum number of processes to start. The server process then
creates the SGA and starts the necessary background processes.

On Unix systems, this is typically done in a system startup script, such as /etc/rc, and on
Windows NT, this is done as a service.

����MXOL�����

��

Page 2210. juli 2001

6DPSOH�SDUDPHWHU��LQLW�RUD��ILOH

��,QLWLDOL]DWLRQ�3DUDPHWHU�)LOH��LQLW;;�RUD
GEBQDPH�������������� �;;
GEBEORFNBVL]H�������� �����
GEBEORFNBEXIIHUV����� �����
VKDUHGBSRROBVL]H����� ���������
ORJBEXIIHU����������� ���.
SURFHVVHV������������ ���
MDYDBSRROBVL]H������� ���������
���

During startup of the Oracle instance, a parameter file is read, specifying information on how to
configure Oracle. Some, but not all, of the parameters can later be modified at runtime either at
the system level for the complete instance, or at the session level for a specific session.

����MXOL�����

��

Page 2310. juli 2001

� %URDG�YLHZ�RI�FRPSRQHQWV
� $Q�2UDFOH�'DWDEDVH

� 'DWDILOHV��WDEOHVSDFHV
� 7DEOHV��GDWD�W\SHV��LQGH[HV
� 8VHUV��VFKHPD

� $Q�2UDFOH�,QVWDQFH
� 0HPRU\�DQG�SURFHVV�VWUXFWXUHV
� &OLHQW�VHUYHU�FRQQHFWLRQV

� 'DWD�SURFHVVLQJ
� 4XHULHV��GDWD�PDQLSXODWLRQ
� 5ROOEDFN
� 'DWDEDVH�ZULWHV�DQG�UHGR�ORJ
� 5HDG�FRQVLVWHQF\

� 64/�SURFHVVLQJ�DQG�FOLHQW�LQWHUIDFHV
� 6XPPDU\

$JHQGD

����MXOL�����

��

Page 2410. juli 2001

'DWDIORZ�GXULQJ�GDWD�UHWULHYDO

,QVWDQFH

6*$

'DWDEDVH
�EXIIHU
FDFKH

6KDUHG�SRRO

/LEUDU\
FDFKH

'DWD
GLFWLRQDU\
FDFKH

6HUYHU
SURFHVV

'DWDEDVH

�
&OLHQW

�

��

During queries (SQL select statements) data is found in the actual database, i.e. in the database
files, and the server process, that is connected to the client together with the other parts of the
Oracle instance is responsible for executing the SQL statement, getting data from the database
and sending these to the client.

The major steps in this are:

1. The SQL statement is looked up in the OLEUDU\�FDFKH part of the SGA. If it is not already there,
it will have to be parsed first.

2. The blocks containing the data to be retrieved, including e.g. index blocks, are identified in the
EXIIHU�FDFKH part of the SGA.

3. If the blocks do not exist, free buffers are found in the buffer cache, and the necessary blocks
are read from the database files.

4. The information in the blocks are decoded into rows and columns, which are sent to the client.

There are some important things, that should be noted:

• Oracle uses caches at different places to ensure good performance of repetitive things. For the
buffer cache, this is very much like an operating system file buffer cache; the behaviour and use
of the library cache will become clear later.

• The actual read of data from the database files into the buffer cache is done by the server
process. We shall see later, that writing of data is done by one of the background processes.

• The physical (on disk) storage of data is not seen by the client, which simply receives rows with
columns of data as expected.

����MXOL�����

��

Page 2510. juli 2001

'DWDIORZ�GXULQJ�GDWD�PDQLSXODWLRQ

$%&
'()

6HUYHU
SURFHVV

'DWDEDVH
)LOH

5HGR�/RJ
)LOH

EORFN���'()

%XIIHU�&DFKH

/RJ�%XIIHU
/RJ�:ULWHU
3URFHVV

�

�

�
�

�

During processing of a data manipulation statement (DML, i.e. SQL insert, update or delete), the
basic processing is like for queries. I.e. handling of SQL and the library cache is the same.

A new element is now added to the SGA: the�ORJ�EXIIHU. The log buffer logs all changes made to
the buffer cache, so that these changes can be redone in case of a recovery. The processing steps
are:

1. The block, that needs to me modified is read from the disk (unless, it is already found in the
cache)

2. The server process (on behalf of the SQL statement executed by the client), makes an entry into
the log buffer, specifying the operation to be done on the data block. The picture shows, that the
redo log entry indicates which block is being updated (it is actually more than simply a block
number), and it shows the actual change. No information is logged about the previous value in the
block.

3. The server process makes the actual change in the block in the buffer cache. In the picture, the
value “ABC” is replaced by the value “DEF”. At this point in time, the block in the buffer cache is
different from the block in the datafile; this is called a dirty block.

4. The user issues the FRPPLW operation, and the server process indicates this to the ORJ�ZULWHU
background process. This process is part of the Oracle instance, and is started when the instance
starts.

5. The log writer process writes the log buffer to a UHGR�ORJ�ILOH. At this time, in case of recovery,
theold block, found in the database file, and the redo log record, found in the redo log file, can be
used to redo the change made by the user.

1HZ�FRQHFSWV�LQWURGXFHG�

• The UHGR�ORJ�EXIIHU, which is found in the SGA is used to store log information between an actual
update and the coresponding commit. The typical size is up to a few hundred kilobytes.

• The ORJ�ZULWHU background process, often abbreviated to /*:5, which writes the redo log buffer
to the redo log files.

• The UHGR�ORJ files, which is where Oracle stores log records necessary for recovery. Typical sizes
are up to a few hundred megabytes or in vary high-transaction systems, a few gigabytes.

����MXOL�����

��

Page 2610. juli 2001

7KH�QHHG�IRU�UROOEDFN�LQIRUPDWLRQ

'DWDEDVH
)LOH

5HGR�/RJ
)LOHEORFN���'()

UHGR

/RJ�:ULWHU
3URFHVV

&OLHQW

XSGDWH��
UROOEDFN "

XQGR

�

$%&
'()

6HUYHU
SURFHVV

�'()

$%&

�

GDWD

The previous slide showed the processing during normal DML operations, i.e. where the client
eventually commits the operation. However, clients may want to undo the operation by
performing a UROOEDFN in stead of the commit, and the simple picture does not show this. On this
slide, the details of undo processing is shown.

1. Before doing the actual modification of the data block, information necessary to undo the
operation is written into an XQGR block, which is also found in the buffer cache.

2. The redo log information is written to the redo log buffer.

3. The actual data block is modified. In order to reconstruct the data block to its state before the
modification, the information in the rollback block is applied to the modfied block.

,PSRUWDQW�SRLQWV

• Note the duality of the two words “redo” and “undo”. Rollback, which is the normally used
word, is synonymous with undo, which is frequently used in Oracle internal documents.

• The undo blocks are actually part of an�XQGR�WDEOHVSDFH or of�UROOEDFN�VHJPHQWV�V�, which are
created and managed by the database administrator.

• The rollback segments are system controlled segments; they are stored in database files just like
ordinary table and index segments, and the blocks of the rollback segment are cached in the
buffer cache of the SGA. In Oracle9i, individual rollback segments are no longer used, rather a
undo tablespace is created by the database administrator, and Oracle automatically manages
space in there.

• The modification of the undo block (step 1 above) is actually logged in the redo log buffer, just
as the modifcation of the actual data block.

����MXOL�����

��

Page 2710. juli 2001

:ULWLQJ�'DWD�WR�'LVN

Database files

6HUYHU
SURFHVV

ABC
DEF

DEF

ABC

�

�

'DWDEDVH
:ULWHU
3URFHVV

As it has been seen earlier, whenever data is changed by a server process on behalf of a client’s
SQL request, the server process makes modifications to the blocks in the buffer cache, including
rollback blocks, and writes redo information to the redo log buffer, which is written to disk by the
log writer process at commit time. This implies that the buffer cache over time will be filled with
modified blocks, so called dirty blocks. These blocks really need to be written to the database
files. This is the mechanism for doing this:

1. Blocks are modfied in the buffer cache, and marked as dirty.

2. At regular intervals, or if no free buffers are found, the GDWDEDVH�ZULWHU process, abbreviated
'%:5, will write dirty blocks to disk. For performance reasons, writing is done in batches and it
will use asynchronous I/O.

����MXOL�����

��

Page 2810. juli 2001

:ULWLQJ�ORJV�DQG�UHFRYHU\

Database files
ABC
DEF

DEF

ABC

'%:5

5HGR�/RJ
)LOH��

/*:5

5HGR�/RJ
)LOH��

�
�

�

�

This slide shows some details of the way the log writer and the database writer work together. In
general, there are at least two redo log files, and the set of files are used sequentially; when one
fills up, the next log buffer is written to the next redo log file.

1. The LGWR process writes log buffers to one of the redo log files. The dirty buffers in the
buffer cache are not yet written to the database file, but in case of a recovery, the old blocks in
the database file plus the information in the redo log file can be used to reconstruct the modified
blocks.

2. The redo log file fills up, and should now be made to ready for the next cycle of redo log
writing. This means, that before the current redo log files is being overwritten, all dirty buffers in
the buffer cache must be flushed, so that recovery of the blocks are not necessary.

3. The LGWR instructs the DBWR, that a flush is necessay, this is called a FKHFNSRLQW. The
checkpoint must complete before the current redo logfile is being overwritten.

4. The DBWR executes the checkpoint, which means that all dirty buffers are being written to the
database file.

,PSRUWDQW�SRLQWV

• A FKHFNSRLQW, which is a complete flush of all dirty buffers in the buffer cache, occurs at least
whenever a redo log file becomes full. The database administrator my choose to make this
happen more often.

• If a checkpoint does not finish before the complete cycle of redo log files, all operations in the
Oracle Server will have to wait for the checkpoint to complete.

����MXOL�����

��

Page 2910. juli 2001

5HDG�&RQVLVWHQF\

$%&

XQGR

0RGLILHG
GDWD

$%&
'()

'()

$%&

$%&
'()

'()

$%&

$%&
�

VHOHFW����

�

��

�
5HDG�FRQVLV�
WHQW�GDWD

The rollback (undo) information, that has been discussed earlier, is used in other cases, besides an
actual rollback operation from the client. In the scenario above, some user has updated the block
with “ABC” into “DEF”, which is actually changed in the data block and registered in the undo
block as rollback information. Concurrently, some other user is performing a query.

1. A user is performing a query, which reads blocks in the buffer cache.

2. A block is read, which is too new, i.e. it is modified after the start of the query. Hence, to get a
consistent read for the query, this block cannot be used.

3. The information in the undo-block is applied to a copy of the modified block, with the effect
that a block with the original block contents is constructed.

4. The query uses this FRQVLVWHQW�UHDG copy of the block and continues.

����MXOL�����

��

Page 3010. juli 2001

5HDG�&RQVLVWHQF\

7LPH

&OLHQW�� &OLHQW�� &OLHQW��

XSGDWH����

VHOHFW����

VHOHFW����

FRPPLW

&OLHQW��

VHOHFW����

�

�

�

�

�

The behaviour of the UHDG�FRQVLVWHQF\ model is described further in this slide:

1. A user, client-2 is starting a query at time-1. The read consistency model ensures a consistent
view of data during the entire run of the query, which is a snapshot of the database taken at the
time the query starts.

2. The user, client-1 executes an update operation (which still may be either committed or rolled
back).

3. The user, client-3, starts a query. Since the start of the query is before the commit of client-1’s
update operation, client-3 does not see the update done by client-1.

4. At this time, client-1 decides to do an update. However, since both queries of client-2 and
client-3 started earlier than the commit-time, none of the queries will see the update.

5. Client-4 starts a query after the commit of client-1, hence the query started at time-5 does see
the change made by client-1.

 ,PSRUWDQW�SRLQWV�

• The snapshot time of a query is the start time of the query, independent on the time taken to
complete the query.

• Effective timestamp of DML operations (insert, update, delete) is the commit time, and only the
client actually performing the DML operation, is able to see the changes made until commit time.

• The rollback segments are used by all other clients to reconstruct a read consistent view of data,
taken at the start time of the query.

• Due to the fact, that rollback segments may be needed by queries after the commit of an
operation, rollback information is not released immediately after commit.

• Rollback segments are in fact circurar buffers, which means that rollback information is being
overwritten after a certain period of time. With Oracle9i, this is managed automatically, by the
database administrator specfying the time to keep undo information available.

• If very long running queries (several minutes to hours) are executing at the same time as there is
a risk ageing out necessary rollback information for the query. In this case, an error will be
returned to the client. Note, however, that this is far better than using other database systems,
where concurrently running updates and queries are either impossible due to locking, or
errorneous due to queries returning in-consistent results.

����MXOL�����

��

Page 3110. juli 2001

� %URDG�YLHZ�RI�FRPSRQHQWV
� $Q�2UDFOH�'DWDEDVH

� 'DWDILOHV��WDEOHVSDFHV
� 7DEOHV��GDWD�W\SHV��LQGH[HV
� 8VHUV��VFKHPD

� $Q�2UDFOH�,QVWDQFH
� 0HPRU\�DQG�SURFHVV�VWUXFWXUHV
� &OLHQW�VHUYHU�FRQQHFWLRQV

� 'DWD�SURFHVVLQJ
� 4XHULHV��GDWD�PDQLSXODWLRQ
� 5ROOEDFN
� 'DWDEDVH�ZULWHV�DQG�UHGR�ORJ
� 5HDG�FRQVLVWHQF\

� 64/�SURFHVVLQJ�DQG�FOLHQW�LQWHUIDFHV
� 6XPPDU\

$JHQGD

����MXOL�����

��

Page 3210. juli 2001

64/�SURFHVVLQJ

select * from emp

update emp set …

select ename from emp
 where empno=1234

select enane from emp
 where empno=5678

insert into emp
 values
 (123,‘Smith’,’Manager’)

6HUYHU
SURFHVV

&OLHQW
/LEUDU\��64/��&DFKH

� SDUVH
� VRIW�SDUVH
� KDUG�SDUVH

� H[HFXWH
� IHWFK

Oracle SQL processing is done in generally three steps via the client/server interface; SQL
statements are sent to the server, are being executed as the server and results are sent back to the
client. For optimization, the number of roundtrips between the server and the client should be
limited, as each roundtrip incurs a network message or a process switch if the client and the
server runs on the same computer.

The SDUVH step

In order for a SQL statement to be executed, is must be found in the Library Cache of the SGA,
and must be prepared for exeuction. This is called the SDUVH step. The SQL statement is sent to
the server, which first tries to identify an identical statement in the cache; if one is found, a VRIW
SDUVH is executed, which mainly does a verification of access rights. If the SQL statement is not
found, a KDUG�SDUVH is done, which includes actual parsing and optimization of the statement.
The hard parse can be time consuming, in particular for complex SQL statement, but even
relatively simple SQL statements have a parse overhead, that can (and should) be avoided.

The H[HFXWH step

After parsing, the client instructs the server to execute the SQL statement. This step can be
repeated, which means that a SQL statement can be parsed once and executed several times,
which may heavily reduce the overhead by parsing.

The IHWFK step

If the SQL statement is a query, the rows that are the result are sent to the client during this step.

����MXOL�����

��

Page 3310. juli 2001

64/�3URFHVVLQJ

select * from emp

update emp set …

select ename from emp
 where empno=1234

select enane from emp
 where empno=:1

insert into emp
 values
 (:1,:2,:3)

/LEUDU\��64/��&DFKHLQWHJHU�HQR�
VWULQJ�HQDPH�����
VWULQJ�WLWOH�����

SDUVH�³LQVHUW�LQWR�HPS
�����YDOXHV�������������´��

ELQG��	HQR����³��´��
ELQG��	HQDPH��³��´��
ELQG��	WLWOH��³��´��

HQR�� �����
HQDPH�� �³6PLWK´�
WLWOH�� �³0DQDJHU´�
H[HFXWH���

In order to reduce the number of parse operations, all SQL statements that are being used
repetitively should use SODFHKROGHUV, also called ELQG�YDULDEOHV, as the “:1” in the select statement
in the program example above. The example shows an extra processing step:

The ELQG step

Any constant in SQL statements, e.g. the ‘1234’ in ‘select * from emp where empno=1234’ can,
and generally should, be replaced by ELQG-variables, which are identified by colon followed by a
number or a string, e.g. :1, :2, :abc, etc. In the client program, an actual variable is ERXQG to this
bind-variable, and the actual value of the program variable is then used at execute time. This
means that the execute can be repeated with different values, but with the same SQL statement;
hence, no new parse is necessary.

����MXOL�����

��

Page 3410. juli 2001

64/�3URFHVVLQJ

LQWHJHU�HQR��LQWHJHU�GQR�
VWULQJ�HQDPH�����
VWULQJ�WLWOH�����

SDUVH�³VHOHFW�HPSQR�HQDPH�MRE�IURP�HPS�ZKHUH�GHSW ��´��

ELQG���	GQR��³��´��
GHILQH�	HQR�������
GHILQH�	HQDPH�����
GHILQH�	WLWOH�����

GQR�� ����
H[HFXWH���
ZKLOH��VWLOO�URZV!�GR
��IHWFK����SULQW�HQR��HQDPH��WLWOH��
GRQH�

Bind-variable can (and should) also be used with queries as in this example. Additionally, this
example shows the GHILQH step:

The GHILQH step

For queries, program variables must be available to retrieve the results of the query during the
fetch step. This is done by the GHILQH call, which takes program variable and the number in the
select-list as arguments.

����MXOL�����

��

Page 3510. juli 2001

6XPPDU\

,QVWDQFH

6*$ 6KDUHG�SRRO

'%:5 /*:5

'DWDEDVH

'DWD�ILOHV� 5HGR�ORJ
ILOHV

8VHU

SURFHVV

6HUYHU

SURFHVV

3DUDPHWHU
ILOH

����MXOL�����

��

3DUWQHU�6HUYLFHV
4XLFN�6WDUW�WR

7KH�2UDFOH�6HUYHU

4XHVWLRQV"

)UDJHQ"

)UnJRU"

